Ask Singapore Homework?
Upload a photo of a Singapore homework and someone will email you the solution for free.
Question
International Baccalaureatte | Further Maths HL
One Answer Below
Anyone can contribute an answer, even non-tutors.
for cross reference
Iim (x² - 9) / (x² - 7x + 12)
x→3
= Iim (x + 3)(x - 3) / [(x - 3)(x - 4)]
x→3
= Iim (x + 3) / (x - 4)
x→3
= (3 + 3) / (3 - 4)
= 6 / -1
= -6
lim (2x³ - 1458) / (√x - 3)
x→9
= lim 2(x³ - 729) / (√x - 3)
x→9
= 2 lim (x³ - 9³) / (√x - 3)
x→9
= 2 lim (x - 9)(x² + x(9) + 9²) / (√x - 3)
x→9
[Recall the property a³ - b³ = (a - b)(a² + ab + b²) ]
= 2 lim (x - 9)(x² + 9x + 81) / (√x - 3)
x→9
= 2 lim ((√x)² - 3²)(x² + 9x + 81) / (√x - 3)
x→9
= 2 lim (√x - 3)(√x + 3)(x² + 9x + 81) / (√x - 3)
x→9
[Recall the property a² - b² = (a + b)(a - b) ]
= 2 lim (√x + 3)(x² + 9x + 81)
x→9
= 2 (√9 + 3)(9² + 9(9) + 81)
= 2(6)(243)
= 2916
(Edited)
lim x⁴ sin π/x cos π/x²
x→0
= lim (x⁴) · lim (sin π/x cos π/x²)
x→0□□□x→0
0⁴ · lim (sin π/x cos π/x²))
□□x→0
= 0 · lim sin π/x cos π/x²
□□x→0
= 0
(0 multiplied by anything is still 0)
(Note that if we were to find lim sin π/x cos π/x², x→0 alone, the limit does not exist )
lim ((2x + 4)³/² + e²ˣ - 9) / 2x
x→0
= lim d/dx((2x + 4)³/² + e²ˣ - 9) / d/dx(2x)
x→0
= lim (3/2 ·(2x + 4)¹/² · 2 + 2e²ˣ) / 2
x→0
= lim (3/2 · (2x + 4)¹/² + e²ˣ)
x→0
= 3/2 · (2(0) + 4)¹/² + e²⁽⁰⁾
= 3/2 · 4¹/² + 1
= 3/2 · 2 + 1
= 3 + 1
= 4
Using the series, you will be able to derive the following :
(2x + 4)³/² = 8 + 6x + ¾ x² - 1/16 x³ + 3/256 x⁴ + ...
e²ˣ = 1 + 2x + 2x² + 4/3 x³ + ⅔ x⁴ + ...
So,
((2x + 4)³/² + e²ˣ + 9) / 2x
= ( (8 + 6x + ¾ x² - 1/16 x³ + 3/256 x⁴ + ...) + (1 + 2x + 2x² + 4/3 x³ + ⅔ x⁴ + ...) - 9) / 2x
= ((6x + ¾ x² - 1/16 x³ + 3/256 x⁴ + ...) + (2x + 2x² + 4/3 x³ + ⅔ x⁴ + ...) + 8 + 1 - 9) / 2x
= ((6x + ¾ x² - 1/16 x³ + 3/256 x⁴ + ...) + (2x + 2x² + 4/3 x³ + ⅔ x⁴ + ...)) / 2x
= (3 + ⅜ x - 1/32 x² + 3/512 x³ + ...) + (1 + x + ⅔ x² + ⅓ x³ + ...)
= 3 + 1 + (⅜ x - 1/32 x² + 3/512 x⁴ + ...) + (x + ⅔ x² + ⅓ x³ + ...)
= 4 + (⅜ x - 1/32 x² + 3/512 x⁴ + ...) + (x + ⅔ x² + ⅓ x³ + ...)
Then,
lim ((2x + 4)³/² + e²ˣ + 9) / 2x
x → 0
= lim (4 + (⅜ x - 1/32 x² + 3/512 x⁴ + ...) + (x + ⅔ x² + ⅓ x³ + ...) )
x → 0
= 4 + (⅜ (0) - 1/32 (0²) + 3/512 (0⁴) + ...) + (0 + ⅔ (0²) + ⅓ (0³) + ...)
= 4
See 1 Answer
lim (e^(-1/x²) / x²)
x→ 0
= lim (1/x² / e^(1/x²) )
x→ 0
= lim (d/dx (1/x²) / d/dx e^(1/x²) )
x→ 0
= lim -2/x³ / (-2/x³ · e^(1/x²) )
x→ 0
= lim 1 / e^(1/x²)
x→ 0
= lim e^(-1/x²)
x → 0
= e^(lim -1/x²)
x→0
= e^(-lim 1/x²)
x→0
= 1/e^(lim 1/x²)
x → 0
= 1/e^∞
= 0