Ask Singapore Homework?
Upload a photo of a Singapore homework and someone will email you the solution for free.
Question
junior college 2 | H2 Maths
One Answer Below
Anyone can contribute an answer, even non-tutors.
Hi, could you provide consice working and explanation? I am unable to get the answer.
(1 - x)y = ln(1 + 3x)
Differentiate with respect to x,
(1 - x)dy/dx + (-1)y = 3/(1 + 3x)
(1 - x)dy/dx - y = 3/(1 + 3x)
Differentiate with respect to x,
(1 - x)d²y/dx² + (-1)dy/dx - (1)dy/dx = -3(3)/(1 + 3x)²
(1 - x)d²y/dx² - 2dy/dx = -9/(1 + 3x)²
(1 - x)d²y/dx² + 9/(1 + 3x)² = 2dy/dx
(Shown)
y = ln(1 + 3x)/(1 - x) ①
(1 - x)dy/dx - y = 3/(1 + 3x) ②
(1 - x)d²y/dx² + 9/(1 + 3x)² = 2dy/dx ③
We also know the Maclaurin expansion :
f(x) = f(0) + xf'(0) + x²/2! f''(0) + x³/3! f'''(0) + ...
Letting y = f(x),
dy/dx = f'(x), d²y/dx² = f''(x), d³y/dx³ = f'''(x)
Sub x = 0 into ①,
y = ln(1 + 3(0))/(1 - 0)
= ln 1
= 0
This is f(0)
Sub x = 0, y = 0, into ②,
(1 - 0)dy/dx - 0 = 3/(1 + 3(0))
dy/dx = 3/1 = 3
This is f'(0)
Sub x = 0, y = 0, dy/dx = 3 into ③,
(1 - 0)d²y/dx² + 9/(1 + 3(0))² = 2(3)
d²y/dx² + 9 = 6
d²y/dx² = -3
This is f''(0)
From ③,(1 - x)d²y/dx² + 9/(1 + 3x)² = 2dy/dx
Differentiate with respect to x,
(1 - x)d³y/dx³ + (-1)d²y/dx² + 9(-2)(3)/(1 + 3x)³ = 2d²y/dx²
(1 - x)d³y/dx³ - d²y/dx² - 54/(1 + 3x)³ = 2d²y/dx²
(1 - x)d³y/dx³ - 54/(1 + 3x)³ = 3d²y/dx²
Sub x = 0, y = 0, dy/dx = 3, d²y/dx² = -3,
(1 - 0)d³y/dx³ - 54/(1 + 3(0))³ = 3(-3)
d³y/dx³ - 54 = -9
d³y/dx³ = 45
This is f'''(0)
So,
y = f(x) = f(0) + xf'(0) + x²/2! f''(0) + x³/3! f'''(0) + ...
y = 0 + x(3) + x²/2! (-3) + x³/3! (45) + ...
y = 3x - 3/2 x² + 15/2 x³ + ...
For ln (1 + x) : x - x²/2 + x³/3 +...
For (1 + x)ⁿ : 1 + nx + n(n - 1)/2! x² + n(n - 1)(n - 2)/3! x³ + ...
So,
y = ln(1 + 3x)/(1 - x)
y = ln(1 + 3x) (1 - x)-¹
= [3x - (3x)²/2 + (3x)³/3 + ...] [1 + (-1)(-x) + (-1)(-2)/2! (-x)² + (-1)(-2)(-3)/3! (-x)³ +...]
= [3x - 9/2 x² + 9x³ + ...] [1 + x + x² + x³ +...]
= 3x(1) + 3x(x) + 3x(x²) - 9/2 x² (1) - 9/2 x² (x) + 9x³(1) + ...
= 3x + 3x² + 3x³ - 9/2 x² - 9/2 x³ + 9x³
= 3x - 3/2 x² + 15/2 x³ + ...
(verified)
|-x| < 1
|x| < 1
-1 < x < 1
Set of values for which ln(1 + 3x) is valid :
-1 < 3x ≤ 1
-⅓ < x ≤ ⅓
Combining the two ,
-⅓ < x ≤ ⅓
See 1 Answer